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Abstract — Several investigators in microwave bioeffects research have

exposed biological preparations to intense microwave fields, while at the

same time cooling the sample with flowing water. We examine the heat

transfer characteristics of this situation, to estimate the maximum tempera-

ture increase and thermal time constants that might be encountered in such

an experiment. The sample is modeled as a uniform sphere, cylinder, or

slab subject to uniform heating, which is located in an unbounded coolant

flow. The heat transfer is determined by the Biot and Reynolds numbers

(which reflect the geometry, fluid flow, and material thermal properties of

the system) the temperature rise is governed by the heat conduction

equation coupled with external convection. The results are expressed in

terms of nondimensional quantities, from which the thermal response of a

heated object of arbitrary size can be determined. At low coolant flow

rates, the maximnm temperature rise can be biologically significant, even

for relatively small objects (of millimeter radius) exposed to moderate

levels of microwave energy (with a SAR of ca. 100 mW/g). The results are

valid also where the coolant is a gas or a liquid different from water, the

only restriction being on the Reynolds number of the flow.

I. NOMENCLATURE

Radius of the spherical tissue, in meters.

in Constant of integration in (1 1), (18), and (25).

Bi Biot number.
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Specific heat, in joules per kilogram degrees Celsius.

Half the thickness of the rectangular tissue, in

meters.

Convective heat transfer coefficient, in watts per

square meter degrees Celsius.

Bessel function of the first kind and order m, of a

real argument x.

Thermal conductivity, in watts per meter degrees

Celsius; without subscript it refers to the tissue.

Characteristic length = a or R or d or as ap-

propriate.

Nusselt number= hL/K.

Peclet number= Re Pr.

Prandtl number= v/a.

Volumetric heat generation, in watts per cubic me-

ter.

Radial coordinate.

Radius of the cylindrical tissue, in meters.

Reynolds number = UWL/v.

Time.

Temperature, in degrees Celsius.

Free stream velocity, in meters per hour.

Coordinate for rectangular slab tissue.

A. Greek Letters

a Thermal diffusivity, in square meters per hour.

0 Nondimensional temperature = (T* – TO)/(QL2/K ).

A. Eigenvalues defined by (13), (20), and (27).
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v Kinematic viscosity of the coolant, in square meters

per hour.

P Density, in kilograms per cubic meter.

$ Transient temperature response.

B. Subscripts

Cooling period.

k Based on the diameter.

eq Equivalent.

f Coolant fluid.

max Maximum.

Ss

o
0

c.

*
,.

Steady-state.

Corresponding to Re = O.

Att=Oorr+co.

Superscripts

Dimensional quantity.

Of cylindrical object.

Of rectangular object.

H. INTRODUCTION

I T IS WELL known that tissues, when exposed to

microwave or radiowave heating, heat up as the elec-

tromagnetic energy is absorbed. An important problem in

microwave bioeffects research is to distinguish between

effects that are produced directly by the electromagnetic

fields, and those that are a consequence of the heating

alone. To address this problem, several experiments have

been performed in which a small biological preparation

(such as nerve bundle, eye lens, or a small pipette filled

with a cellular suspension) is exposed to a relatively intense

electromagnetic field (with time averaged Specific Absorp-

tion Rate (SAR) sometimes as high as 1.5 W/g) while

being cooled with a flowing liquid on its outside surface

[1]-[6]. Because of the critical dependence of the tempera-

ture on the heat transfer properties of the object and

coolant, it is desirable to develop suitable theoretical mod-

els to describe the thermal characteristics of the situation.

An appropriate model can be used to estimate the magni-

tude of the temperature increase that will occur in the

heated preparation and can help in defining the flow

properties required to obtain sufficient cooling. To our

knowledge, no such model has previously been developed

for this class of microwave bioeffects experiments.
In this study, we examine the thermal characteristics of a

tissue, subject to uniform electromagnetic heating and con-

vective cooling on the outside. The tissue geometry is

modeled as a sphere, circular cylinder, or rectangular slab.

We calculate the thermal response of the object by solving

the governing nondimensional equation in closed form.

The solutions we obtain are quite general, and apply to

heated objects of arbitrary size and composition, immersed

in a coolant which could be a gas or liquid with a large

possible range of flow rates, the only restriction being on

the Reynolds number of the flow. Also, we estimate the

minimum rate of coolant flow that is required to produce

optimal cooling of the tissue, and the variation in the
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Fig. 1. Three tissue geometries considered in the Rmlysis.

temperature rise with coolant flow rate, at less than this

minimum flow rate. A variational analysis of time depen-

dent heating of irradiated tissue has recently been pre-

sented by Bardati [7]. However, our approach— obtaining

exact solutions to simplified models—is likely to provide a

good understanding of the heat transfer characteristics of

the type of experiment considered here. The results have

obvious application to other situations in which an object

is subject to heating throughout its volume and to convec-

tive cooling.

HI. STATEMENT OF THE PROBLEM

The schematic diagram and the coordinate system for

the problem are illustrated in Fig. 1. A homogeneous

object is located in an unbounded, Iarninar, coolant flow

and is subject to uniform internal heating at a rate Q

beginning at time t = O. In a real experiment, the object

would be a small biological preparation and the cooling

fluid would be water or Ringer’s solution. Also, in a real

situation, both the object and the coolant are simulta-

neously heated by the incident microwave energy to vary-

ing degrees and the coolant flow regime may not be

Iaminar. The resultant mathematical problem in this latter

case would be quite complex. We consider here instead a

simpler case, in which the object alone is heated and it is

immersed in a flowing fluid with uniform temperature TOat

a large distance from the object. Furthermore, we assume

that the coolant is in a thermal steady-state, even though

the tissue temperature is time dependent. This is a reasona-

ble first approximation to the real situation and the results

are likely to approximate the results obtained from a more

exact analysis.

IV. ANALYSIS

We consider the tissue to be modeled as a sphere, a

cylinder, or a rectangular slab. The tissue is initially at a

uniform temperature TO. The irradiation will cause a uni-
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form volumetric heat generation in the tissue, which is

cooled by a fluid flow over its exterior surface. For purpo-

ses of convenience, we shall discuss the three separate cases

as follows.

A. Spherical Object

We consider a sphere of radius a that is initially at

uniform temperature To, subject to uniform heating at rate

Q beginning at time t*= 0.The governing equation for this

case is

**(r*2%)+:”:%

()<r*<~, t*>o (1)

where the symbols are defined in the Nomenclature.

Equation (1) is subject to the initial condition (hereafter

referred to as IC)

t*<o T*(r*, t’) =To (2a)

and the boundary conditions (hereafter referred to as BC’S)

t*>O lT*(r*, t*)l<co (2b)

everywhere in the domain, and

_ ~ dT*
—=h(T*– To), onr*=a
i3r*

(2C)

In (2c), h is the heat transfer coefficient at the surface of

everywhere in the domain, and

dtl~~
—= –Bid,,,
dr

onr=l

and

with IC’S

t<o ‘Z(r, t)= –O,,(r), ()<r<]

and BC’S

t>O lT(r, t)l<~

everywhere in the domain, and

aw

ar
—= –Bi~, onr=l.

The solution of (6) subject to conditions in (7) is

and that of (8) and (9) is

In (1 1), the constants Bn are given by

(7b)

(8)

(9a)

(9b)

(9C)

(lo)

(11)

the object, and will be estimated in a later section. In (1) sin A ~ CosAn sin~~ 1

I

CosAn sin A ~

we have assumed purely radial conduction and constant
—+— — —

3A: A; – A: + 3Bi A. A:
transport properties. Equations (1) and (2) are normalized B.= 1
as follows: distances are normalized by a, temperatures by [

1 sin2A~
——T . . 1

(T* – To)/(Qa2/k), and time by a2/a. Then the nondi-

mensional formulation can be written as follows:

la ~ ae

()

ad.—
r2 ar ‘F ‘l=X

(3)

with IC

t<o O(r, t)=O (4a)

and BC’S

t>O l~(r, t)l<cc (4b)

everywhere in the domain, and

ao

5=
– BiO, onr=l. (4C)

Here Bi is the Biot number (equal to ha/k) which is the

ratio of the internal to external thermal resistance of the

body.

Now we write

d(r, t)= fl,,(r)+g?(r, t) (5)

where 6,,(r) is the steady-state solution and V( r, t) is the

transient response. Substitution of (5) into (3) and (4) leads

to

1 a r2d0,,.—
r2 tlr (i

-& +1=0

with BC’S

(6)

(7a)

12 4A.
1

(12)

In the above, the eigenvalues A. are the roots of the

characteristic equation

l–Acot A=Bi. (13)

A concise listing of A. as functions of Bi is given by Myers

[8].

When the object reaches a steady-state, the heating is

discontinued and the preparation is allowed to cool. For

this case, the governing differential equation is the same as

(3), except that the heat generation term does not appear.

The boundary conditions also have the same form as

(4b, c). The initial conditions for the cooling case are

t<o f9C(r, t)= f3,~(r)

where the subscript c denotes cooling. It immediately fol-

lows that

tl,(r, t)= –V(r, t).

1?. Cylindrical Object

The cylindrical tissue is taken to experience a crossflow

of the coolant. The circular cylinder is of radius R and is

sufficiently long that the end effects are negligible. The

heat flow is then in the radial direction only. The governing

differential equation and the associated conditions are (in
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the nondimensional form)

with IC

t<o ~(r, t)=O (15a)

and BC’S,

l~(r, t)l<ce (15b)

everywhere in the domain, and

ad – –file,-x– onr=l. (15C)

In the above, #is the nondimensional temperature equal to

(7’* – To)/(QR’/k), the radial di~tance is normalize~ by

R, the time by R’/a, and Bi - (hR /k). The carat ( ) is

used to indicate cylindrical geometry. Following a proce-

dure similar to the spherical case, we let

fJ(r, t)= fl,(r)+@(r, t) (16)

where

(17)

is the steady-state solution, and

is the transient response. B. can be determined as

The eigenvalues A. are the roots of the characteristic

equation

AJ,(A)=%lf(o(A) (20)

where JJ X) are the Bessel functions of the first kind and

order m. The eigenvalues ~. are also given in [8].

When the steady-state is reached, the tissue is allowed to

cool. For the cooling case, the temperature distribution is

given by

jC(r, t)= –$(r, t).

C. Rectangular Slab

We shall consider a finite slab of thickness 2d and lateral

dimensions which are large compared to the thickness, so

that the gradients in those directions are negligible. We will

only solve the heat transfer equation in one dimension, but

employ a three-dimensional model to estimate the ~heat

transfer coefficient ~. The midplane between the two faces

(top and bottom) is then considered as an adiabatic surface.

The nondimensional governing differential equation and

the associated conditions are

a26 af7
ax’ ‘1=7X (21)

with IC

t<o e(x, t)=o (22a)

and BC’S

a$
t>(l

x
=0, atx=O (22b)

a~

&
= –Big, atx=l. (22C)

Here x = x*/d and Bi = ~d/k. The tilde (-) is used to

indicate the rectangular geometry. We write

a(x, t) =(,(X)+1(X, t) (23)

where ~~,(x ) and ?(x, t)can be shown to be

i,(x)=–+’++++ (24)

and

%(x, t)= ~ Bncos Anxe-A:’. (25)

The coefficients B. and ~. in (25) are determined from

[

sin A. Cos An sin ~.

2An + ~’ A;
jn = n I

[

1 sin2A 1
(26)

;+zy
n

and

ManA = Bi. (27)

For the cooling case

#c(x, t)= –qx,t). (28)

V. EVALUATION OF THE HEAT TRANSFER

COEFFICIENTS

T~ heat transfer coefficients h used in the definitions of

Bi, Bi, and ~ are evaluated from the steady-state Nusselt

number correlations available in the heat transfer litera-

ture. These correlations summarize experimental data over

very wide ranges of experimental conditions, and reflect

the thermal and hydrodynamic properties of the coolant

flow. Therefore, the present results can be applied to cases

in which the coolant is a liquid other than water, or even a

gas, the only restriction being on the Reynolds number of

flow. The evaluation we make is consistent with the as-

sumption of quasi-steady-state of the coolant heat transfer.

The calculation of the heat transfer itself will be made on

the basis of the temperature difference between the tissue

surface and the bulk temperature of the coolant.

1) For a spherical object, the following correlation is

taken from Gebhart (9):

Nu~ = ~=2.0+0.6Reji2Pr113,
f

for l< Re~<7X 104. (29)

Here Nu ~ and Re~ are, respectively, the Nusselt and

Reynolds numbers which are based on the diameter of the

sphere (cf. Nomenclature), and Pr is the Prandtl number of

the coolant. The constant 2.0 in (29) is the Nusselt number

for a stagnant coolant bounding the sphere (Re~ = O).
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2) For a cylindrical object, the following correlation

suggested by Churchill and Bernstein (10) is used:

NuD=~=03+o.62Rej/’’pr,\q

f [1+(%2’31”4 ’30’
for 0.04< Re~ <4000. Again, fiu~ and Re~ are based on

the cylinder diameter.

3) For a rectangular slab of finite thickness there are no

correlations that are available in published literature. A

general solution to this problem is quite difficult; even to

experimentally determine a suitable heat transfer correla-

tion for the flow past a heated, finite thickness, finite slab,

the task is formidable. Instead, it is customary to ap-

proximate the problem by making suitable assumptions. In

this paper we set

~D
FJu ~ = + = Nuconduct,on-i- Nuconvection. (31)

.q
f

The NuCO~~UC,,O~is evaluated by approximating the rectan-

gular slab as a solid bounded by two circular disks, one at

the top and the other at the bottom. The total surface area

of the disk will equal the surface area of the slab. The

analytical solution to the heat conduction problem of a

circular disk in a stagnant fluid is given by Carslaw and

Jaegar [11]. From this, it follows that, for our problem

2~Req
Nu cond.ct,on = — — k

_—

k

(32)

where Req is the radius of the equivalent circular disk.

Next, the NuCO~v~CtiOnis evaluated on the assumption that

the slab could be replaced by an equivalent sphere. Then

we can write

~D,q
I% = — =0.6 Re}i2Prl/3.convection kf

(33).q

In (33), D.q is the diameter of an equivalent sphere whose
surface area equals the surface area of the slab.

Since we have developed an expression for the Nu on an

approximate basis, it is worthwhile to examine the validity

or appropriateness of the results obtained. In this context,

Brenner [12] has published solutions to the heat transfer

problem of flow past an arbitrarily shaped body. His

solutions are limited to the range of low Peclet numbers
(Pe = Pr. Re). 13renner’s analysis is by asymptotic methods

and he offers the result for Pe <1

Nu =1+ NuOPe

Nu ~
— +O(Pe2)

8
(34)

where Nu ~ is the Nusselt number for the stagnant fluid

case. In (34), the characteristic length is the largest length

of the arbitrarily shaped body. For a sphere, this would be

the diameter, and for a rectangular slab this would be the

principal diagonal. Brenner’s equation will be used as a

check on the correlations employed in our paper, in the

next section.

HEATING

04

f

Re=OO

/1

!7. =05

03 I

R,=50

jo,

01 !
II

7 ,=00 (CENTER OF
SPHERICAL
TISSUE)

Fig 2, Nondimensional temperature ( 0) versus time ( t ) at the center of
the tissue sphere, for coolant flow rates with Reynolds numbers of O,
0.5, and 5.0.

VI. RESULTS AND DISCUSSION

The transient temperature distributions during the heat

up and cooling of a spherical, a cylindrical, and a rectangu-

lar slab tissue are calculated for different flow Reynolds

numbers. In these calculations we have used the following

values for the tissue properties:

density:

thermal conductivity y:

specific heat:

Ptissu. = Pwater

kti,,Ue = 0.7kw,,e,

~,,,,ue= o.7cpwater.c

The properties are evaluated at a temperature TO= 30°C.

Fig. 2 shows the nondimensional temperature 0 versus

nondimensional time t, at the center r = O of a spherical

tissue for Re~ = O, 0.5, and 5. At any given time i, the

maximum temperature occurs at the center of the sphere;

the maximum value is attained during the steady-state of

the heating period. The nondimensional, maximum tem-

perature at the center of the sphere, in the steady-state,

follows from (10) to be

t9 -1;1
‘=–6 3Bi”

(35)

It is seen from (35) that the maximum temperature at-

tained decreases with increasing Reynolds numbers, which

is an expected consequence of the higher rate of heat

removal from the surface of the tissue. However, for

Reynolds numbers greater than about 5, the maximum

temperature very quickly approaches its limiting value of

1/6. This behavior is evident from Fig. 2. It is also

observed from Fig. 2 that the steady-state is attained faster

with increasing Reynolds number. The time taken to attain

a steady-state is determined by the time constants of the

problem, which appear as eigenvalues in (11), (18), and

(25). A high Re results in a high 13i and the associated

eigenvalues are large [8]. For objects with comparable

characteristic dimensions (a, R, d), these eigenvalues in-

crease in the following order: slab, cylinder, and sphere.

(This is not surprising in view of the greatly different
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, , 1
12 01 2
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Fig. 3. Nondimensionaf temperature ( 6 ) versus nondimensional time
(r) at different radial locations in the tissue smhere. assuming a coolant
flow with Reynolds number 0.5. The radi& of” the sphe;e is 1 in
nondimensional units.

10

F}
Re =05

r=O I CENTERLINE OF

HEATING CYLINDRICAL TISSUE I

f 05 R,= 5.0

@
COOLING

J!._-._ L
024 6 0 2 L 6

Fig. 4. Nondimensional temperature ( 8) versus nondimensional time
(t) on the centerline of a cylindrical object, for coolant flows with
Reynolds numbers 0.5 and 5.0.

surface to volume ratios of these objects.) In each case, the

lowest eigenvalue dominates, and the approach to the

steady-state resembles an exponential process.

Fig. 3 shows the nondimensional temperature f3 versus

dimensionless time t for the spherical tissue. The Re is

fixed at 0.5 and the values are given for three different

radial locations r = O, 0.5, and 1.0. All the curves in Fig. 3

correspond to the same set of time constants. Thus the time

taken to reach steady-state is the same for all radial loca-

tions. At any time t,during heating or cooling, the temper-

ature O is higher as we move towards the center of the

sphere. Since the time taken to attain the steady-state is

independent of the radial location, the heating or cooling

rate (temperature change/time) is higher as we approach

the center.

Fig. 4 shows the nondimensional temperature 8 versus

time t at the center, r = O, of a cylindrical tissue. The

results are for Re~ = 0.5 and 5. There is no curve corre-

sponding to Re~ = O because for an infinitely long cylinder

with stagnant fluid on the outside, no steady-state solution

exists [9]. The heating and cooling curves are similar to

those found for the sphere, except that the time constants

1.0

M‘
HEATING

1.00

r.05

7 Re. 0,5

,O;r:r=lo y:

o 2 L 6 0 2 L 6
t—

Fig, 5. Nondimensional temperature ( 6’) versus nondimensional time
(t) for different radiaf locations in the cylindrical tissue, for coolant
flow with a Reynolds number of 0.5. The diameter of the cylinder is 1
in nondimensional units.

0.3

1

1 CYLINDER r=OO

Re =05

02 a=lmm

t 1/

SPHERE

o .100 mWICt

j------
0 20 40

i*(sec) -.

Fig. 6. Dimensional temperature (in degrees Celsius) versus dimensional
time (in seconds) at the center of a heated tissue cylinder and sphere,
assummg a heating rate Q of 100 mW/cm3, and a Reynolds number of
flow of the coolant of 0.5.

are larger. Fig. 5 shows the variation of 6 with tat Re = 0.5

and at three radial locations r = O, 0.5, and 1.0. Also, the

nondimensional temperature levels attained for a cylindri-

cal tissue are higher than those for an equivalent spherical

tissue, as expected because a cylindrical object has lesser

surface area for heat transfer per unit volume compared to

an equivalent spherical object. Fig. 6 offers a comparison

between the dimensional temperature at the center that is

attained in a cylinder and a sphere for the same heat

generation of Q = 100 mW/cm3. The Re~ for the external

flow is fixed at 0.5. The tissue dimensions are a = R = 1

mm.

Fig. 7 shows the variation of 6 w-ih t,at the midplane of

a rectangular slab of tissue. The Re~e, values studied are

0.5 and 5. The tissue dimensions are taken to be 1 cm X 1

cm X 0.2 cm. The slab has the longest thermal response

time, for equivalent size structure, of the three different

geometries investigated in this paper. As mentioned earlier,

we choose to compare our results with those of Brenner

[12], which are applicable for the cases where Pe <1. In our

problem, Pr -5. Therefore, a meaningful comparison
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J_____ L k–-.
0 10 20 0 {0 20
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Fig. 7, Nondimensional temperature ( 8) versus nondimensional time
(t) in the midplane of a tissue slab, assuming Reynolds numbers of the
coolant flow of 0,5 and 5,0.
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Fig. 8. The maxrmum temperature gradient, m degrees Celsius per
centimeter at the surface of the tissue sphere, for two different
Reynolds numbers.

TABLE I
COMPARISONOFNUSSELTNUMBERS

l-l Rectangular Slab

Brenner’s Eq. (Ref. 12) 2.320 2.602

Tais Study 2.271 2.590

may be made for Re -0.1. Such a comparison turns out to
be remarkably good (Table I).

Fig. 8 shows the dimensional radial temperature gradient

(“C/cm) versus time (seconds), evaluated at the surface of

a spherical tissue (where the gradient is a maximum). The

Re~ studied are 0.5 and 5. The steady-state value for the

dimensional temperature gradient is seen to be indepen-

dent of the Reynolds number of the external flow. This

value may be shown from the theory to be

surface

(36)

VII. CONCLUDING REMARKS

From these results, several conclusions can be drawn

that are important for the kind of experiment under con-

sideration.

1) There is a minimum Reynolds number of coolant flow

required for optimum cooling. In general, for an object of a

given size heated at a given SAR, higher flow velocities of

the coolant will result in lower steady-state temperature

increases within the object. However, beyond a certain

Reynolds number (which depends on the geometry of the

object) no significant decreases are obtained; the temperat-

ure at the surface approaches that of the coolant, and the
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temperature rise within the object is determined principally

by its thermal conductivity. In an actual experiment, it is

important to employ coolant flows with Reynolds numbers

sufficiently high that the temperature increases in the ob-

ject are at a minimum and the variations in temperature

rise with (perhaps inadvertent) variations in flow rate are

negligible.

The Reynolds number of coolant flow required to pro-

duce this optimum cooling can be easily obtained. We

define a “transition” Reynolds number corresponding to a

case where the temperature increase at the center of the

object is 10 percent above that obtained in the limit of high

coolant flow rate. We find

Sphere: Re~t,a,lt,o~–-4500 (k/kf )2pr-2/3

A
Cylinder: Re~,ran,,t,On–-4200 (k\kf )2Pr-2/3

Slab: ~e~,ran,,,lo”~
()

k D.q
1100 ~ ~ 2Pr-2/3 (37)

f

for moderate to large Prandtl numbers (Pr > 1). For water

flow past a tissue sphere, this transition Reynolds number

is about 700. For a tissue sphere of radius 1 cm, this

condition corresponds to a water flow velocity of 2.5

cm/s; for a 1-mm radius sphere, it would be tenfold

higher. Because of the simplifications employed in these

calculations, somewhat higher flow rates should be pro-

vided in an actual experiment to ensure optimum cooling.

2) The maximum temperature difference that can be

established in a tissue subjected to uniform heating is

bounded by the following limits:

Qa2

()

~+~
Sphere: ~<(T*–TO).=s~2 k (38)

f

(39)
QR2

Cylinder: ~ < (T* – TO)~u

Slab: ~
Q~2

<( T*– To)m. ~~

(40)

For a tissue sphere of 1-cm radius whose material thermal

properties are as given above, subject to a time-averaged

SAR of 0.1 W/cm3, the maximum temperature rise at the

center is thus within the range of 3.9–9.3”C. For a 1-mm

radius sphere subject to the same SAR, the comparable

range is 0.04–0. 1‘C. Since these temperature increases are

quite nonuniform throughout the preparation, they might

elicit biological effects that are not observed in the simple

control experiment of increasing the temperature of the

bath, with no heating by microwave energy. Because of the

quadratic dependence of the maximum temperature rise on

the dimension of the object, the temperature rise in objects

of less than millimeter dimension will be very small for any

experimentally reasonable value of the SAR. This suggests

the impossibility of producing biologically significant tem-

perature gradients over cellular or macromolecular dis-

1165

tances, even though tissue structures or macromolecules of

these small dimensions might, under appropriate circum-

stances, absorb more electromagnetic energy per unit

volume than its surroundings [ 13]–[15].

3) The thermal time constant, required for the sphere to

reach the steady-state after the heating is begun, is of the

order of a */a. For a tissue sphere of 1-cm radius, this is

several minutes; for a 1-mm radius sphere, the time con-

stant is reduced to a few seconds.

It is interesting to examine some of the previous bioef-

fects experiments in view of the present results. Chou and

Guy [1] exposed isolated rabbit nerve bundles to micro-

wave fields with an estimated SAR of 1.5 W/g. The

changes they observed in the conduction velocity of these

bundles corresponded to a 10 increase in the temperature

of the preparation, which was equal to the measured in-

crease in temperature of the coolant fluid during the ex-

posure. From (39), we expect that the maximum tempera-

ture rise in the tissue was about 0.9°C (for a I-mm radius

nerve subject to maximum external cooling). It appears

that, in this case, the differential heating of the nerve

preparation could be significant, although the analysis of

the investigators suggests that the tissue temperature for

the most part was close to that of the coolant.

In contrast, in the experiments of Stewart–Dehann et al.

[6], rat ocular lenses were exposed to microwave fields with

SAR values in the range 120– 1200 mW/cm3. Assuming the

diameter of the lens to be 0.7 cm, we estimate that the

maximum temperature increase is in the range 0.6–6°C

with optimum surface cooling, and up to threefold higher

with less effective cooling. In producing the observed bio-

logical responses (local tissue damage through the lens),

heating effects were probably significant, although the

different effects produced by pulsed versus continuous-

wave microwave energy with the same time-averaged SAR

cannot be accounted for by this model.
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