1158

Donald L. Morton, Professor of Surgery and
Chief, Divisions of Surgical Oncology and Gen-
eral Surgery, is a graduate of the University of
California School of Medicine, San Francisco. As
a young medical student at the University of
California, he became interested in the newly
emerging science of cancer, particularly in the
clinical application of immunology to cancer
treatment and diagnosis. Following his internship
and residency, he joined the National Cancer
Institute, Bethesda, MD, where he became Head
of the Tumor Immunology Section and Senior Surgeon of the Surgery

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 8, AUGUST 1982

Branch. There, he performed extensive studies and developed his ideas of
immunotherapy, and made a number of important contributions which
helped advance the knowledge of the role of the immune system in the
body’s defense against cancer. In April, 1971, he came to UCLA and
founded the Division of Surgical Oncology at the UCLA School of
Medicine. Today, both the doctor and the Division are best known for
work in the development and application of immunotherapy involving the
stimulation of patients’ immune responses as a treatment for cancer.

Dr. Morton is a recognized leader in the field of immunotherapy and
has published almost 300 papers and articles advancing the knowledge of
cancer, including malignant melanoma, lung cancer, bone and soft tissue
sarcomas, breast cancer and colon cancer. )

Heat Transfer in Surface-Cooled Objects
Subject to Microwave Heating

KENNETH R. FOSTER, SENIOR MEMBER, IEEE, PORTONOVO S. AYYASWAMY, THIRUMALCHARI
SUNDARARAJAN, aAND KONERU RAMAKRISHNA

Abstract —Several investigators in microwave bioeffects research have
exposed biological preparations to intense microwave fields, while at the
same time cooling the sample with flowing water. We examine the heat
transfer characteristics of this situation, to estimate the maximum tempera-
ture increase and thermal time constants that might be encountered in such
an experiment. The sample is modeled as a uniform sphere, cylinder, or
slab subject to uniform heating, which is located in an unbounded coolant
flow. The heat transfer is determined by the Biot and Reynolds numbers
(which reflect the geometry, fluid flow, and material thermal properties of
the system); the temperature rise is governed by the heat conduction
equation coupled with external convection. The results are expressed in
terms of nondimensional quantities, from which the thermal response of a
heated object of arbitrary size can be determined. At low coolant flow
rates, the maximum temperature rise can be biologically significant, even
for relatively small objects (of millimeter radius) exposed to moderate
levels of microwave energy (with a SAR of ca. 100 mW /g). The results are
valid also where the coolant is a gas or a liquid different from water, the
only restriction being on the Reynolds number of the flow.

I. NOMENCLATURE

a Radius of the spherical tissue, in meters.
B Constant of integration in (11), (18), and (25).

n

Bi Biot number.
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G, Specific heat, in joules per kilogram degrees Celsius.

d Half the thickness of the rectangular tissue, in
meters.

h Convective heat transfer coefficient, in watts per

square meter degrees Celsius.

J(x) Bessel function of the first kind and order m, of a
real argument x.

k Thermal conductivity, in watts per meter degrees
Celsius; without subscript it refers to the tissue.

L Characteristic length=a or R or d or as ap-
propriate,

Nu  Nusselt number = AL /K.

Pe Peclet number = RePr.

Pr Prandtl number =»/a.

0] Volumetric heat generation, in watts per cubic me-
ter.

r Radial coordinate.

R Radius of the cylindrical tissue, in meters.

Re  Reynolds number =U_ L /.

t  Time.

T Temperature, in degrees Celsius.

U,  Free stream velocity, in meters per hour.

x Coordinate for rectangular slab tissue.

A. Greek Letters

«  Thermal diffusivity, in square meters per hour.
6  Nondimensional temperature = (7*—T;) /(QL*/K).
A, Eigenvalues defined by (13), (20), and (27).
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»  Kinematic viscosity of the coolant, in square meters
per hour.

p  Density, in kilograms per cubic meter.

¢  Transient temperature response.

B. Subscripts

¢ Cooling period.
D Based on the diameter.
eq  Equivalent.
Coolant fluid.
ax Maximum.
ss Steady-state.

g3~

0 Corresponding to Re = 0.
0 Att=0or r — 0.

C. Superscripts

* Dimensional quantity.

Of cylindrical object.
Of rectangular object.

II. INTRODUCTION

T IS WELL known that tissues, when exposed to

microwave or radiowave heating, heat up as the elec-
tromagnetic energy is absorbed. An important problem in
microwave bioeffects research is to distinguish between
effects that are produced directly by thé electromagnetic
fields, and those that are a consequence of the heating
alone. To address this problem, several experiments have
been performed in which a small biological preparation
(such as nerve bundle, eye lens, or a small pipette filled
with a cellular suspension) is exposed to a relatively intense
electromagnetic field (with time averaged Specific Absorp-
tion Rate (SAR) sometimes as high as 1.5 W /g) while
being cooled with a flowing liquid on its outside surface
[1]-{6]. Because of the critical dependence of the tempera-
ture on the heat transfer properties of the object and
coolant, it is desirable to develop suitable theoretical mod-
els to describe the thermal characteristics of the situation.
An appropriate model can be used to estimate the magni-
tude of the temperature increase that will occur in the
heated preparation and can help in defining the flow
properties required to obtain sufficient cooling. To our
knowledge, no such model has previously been developed
for this class of microwave bioeffects experiments.

In this study, we examine the thermal characteristics of a
tissue, subject to uniform electromagnetic heating and con-
vective cooling on the outside. The tissue geometry is
modeled as a sphere, circular cylinder, or rectangular slab.
We calculate the thermal response of the object by solving
the governing nondimensional equation in closed form.
The solutions we obtain are quite general, and apply to
heated objects of arbitrary size and composition, immersed
in a coolant which could be a gas or liquid with a large
possible range of flow rates, the only restriction being on
the Reynolds number of the flow. Also, we estimate the
minimum rate of coolant flow that is required to produce
optimal cooling of the tissue, and the variation in the
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Fig. 1.

Three tissue geometries considered in the analysis.

temperature rise with coolant flow rate, at less than this
minimum flow rate. A variational analysis of time depen-
dent heating of irradiated tissue has recently been pre-
sented by Bardati [7]. However, our approach—obtaining
exact solutions to simplified models—is likely to provide a
good understanding of the heat transfer characteristics of
the type of experiment considered here. The results have
obvious application to other situations in which an object
is subject to heating throughout its volume and to convec-
tive cooling.

III. STATEMENT OF THE PROBLEM

The schematic diagram and the coordinate system for
the problem are illustrated in Fig. 1. A homogeneous
object is located in an unbounded, laminar, coolant flow
and is subject to uniform internal heating at a rate Q
beginning at time = 0. In a real experiment, the object
would be a small biological preparation and the cooling
fluid would be water or Ringer’s solution. Also, in a real
situation, both the object and the coolant are simulta-
neously heated by the incident microwave energy to vary-
ing degrees and the coolant flow regime may not be
laminar. The resultant mathematical problem in this latter
case would be quite complex. We consider here instead a
simpler case, in which the object alone is heated and it is
immersed in a flowing fluid with uniform temperature 7, at
a large distance from the object. Furthermore, we assume
that the coolant is in a thermal steady-state, even though
the tissue temperature is time dependent. This is a reasona-
ble first approximation to the real situation and the results
are likely to approximate the results obtained from a more
exact analysis.

IV. ANALYSIS

We consider the tissue to be modeled as a sphere, a
cylinder, or a rectangular slab. The tissue is initially at a
uniform temperature 7. The irradiation will cause a uni-



1160

form volumetric heat generation in the tissue, which is
cooled by a fluid flow over its exterior surface. For purpo-
ses of convenience, we shall discuss the three separate cases
as follows.

A. Spherical Object

We consider a sphere of radius a that is initially at
uniform temperature Tj,, subject to uniform heating at rate
Q beginning at time #* = 0. The governing equation for this
case is

L (dl), 0 1om
ok \” ko dr*’

0sr*<q,

t*>0 (1)

where the symbols are defined in the Nomenclature.
Equation (1) is subject to the initial condition (hereafter
referred to as IC)
<0 T*(r*,t*)=T, (2a)

and the boundary conditions (hereafter referred to as BC’s)

>0 |T*(r*, ") <o (2b)
everywhere in the domain, and
or* _ .
—k3s =h(T*-T,), onr*=a. (2¢)

In (2¢), & is the heat transfer coefficient at the surface of
the object, and will be estimated in a later section, In (1)
we have assumed purely radial conduction and constant
transport properties. Equations (1) and (2) are normalized
as follows: distances are normalized by a, temperatures by

(T*~T,)/(Qa’*/k), and time by a’/a. Then the nondi-
mensional formulation can be written as follows:
1 9 .00 ) _ a8
28r(r or + ) (3)
with IC
1<0  6(r.t)=0 (4a)
and BC’s
>0 |6(r,t)|<oo (4b)
everywhere in the domain, and
a0
oy — B, onr=1. (4¢c)

Here Bi is the Biot number (equal to ha /k) which is the
ratio of the internal to external thermal resistance of the
body.

Now we write

0(r,t)=0(r)+¥(r,¢) (5)

where 6,(r) is the steady-state solution and ¥(r,t) is the
transient response. Substitution of (5) into (3) and (4) leads

to
(7 L J+1=0 (6)
with BC’s
|0,(r)| < oo (7a)
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everywhere in the domain, and

db, .
7~ " Bif onr=1 (7v)
and
Ld (08 0¥
P2 dr( ar at (8)
with IC’s
t<0  ¥(r,1) 6.(r), O0<r<l (9a)
and BC’s
£>0 [ (r, 1) <oo (9b)
everywhere in the domain, and
o . .
=5, = “Bi¥, onr=1. (9¢)
The solution of (6) subject to conditions in (7) is
=2 1 1
and that of (8) and (9) is
A, 2
¥(r, 1) 2 p AL (11)
In (11), the constants B, are given by
sin A, n cosA, sinA, 1 |cosA, sinA,
3N X X 3Bi| A, A
Bn - .
1 sin2A,
2 4\,

(12)

In the above, the eigenvalues A, are the roots of the
characteristic equation

1—AcotA =Bi. (13)

A concise listing of A, as functions of Bi is given by Myers
[8].

When the object reaches a steady-state, the heating is
discontinued and the preparation is allowed to cool. For
this case, the governing differential equation is the same as
(3), except that the heat generation term does not appear.
The boundary conditions also have the same form as
(4b,c). The initial conditions for the cooling case are

0.(r.1)=6,(r)

where the subscript ¢ denotes cooling. It immediately fol-
lows that

t<<0

6(r,t)=—¥(r,t).

B. Cylindrical Object

The cylindrical tissue is taken to experience a crossflow
of the coolant. The circular cylinder is of radius R and is
sufficiently long that the end effects are negligible. The
heat flow is then in the radial direction only. The governing
differential equation and the associated conditions are (in
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the nondimensional form)

%—;—r(r%%)+1:?£, >0, 0<r<1(14)
with IC
t<0  d(r,1)=0 (15a)
and BC’s,
16 (r,t)| <o (15b)
everywhere in the domain, and
%072 —i’.\ié, onr=1, (15¢)

In the above, 4 is the nondimensional temperature equal to
(T*—T,)/(QR*/k), the radial distance is normalized by
R, the time by R?/a, and Bi= (AR /k). The carat (') is
used to indicate cylindrical geometry. Following a proce-
dure similar to the spherical case, we let

0(r,t)=6(r)+¥(r,1) (16)
where
~ - 1 1
038(1’)———‘4 +;ﬁ—T+Z (17)
is the steady-state solution, and
¥(r.0)= 3 BJo(Nr)e™ (18)
n=0
is the transient response. B, can be determined as
. BiJ(A ) +N,J (A
B____{l 2( n) nl( n)] (19)

" I[P () + 28]

The eigenvalues A, are the roots of the characteristic
equation
AT (M) =Bi Jy(A) (20)

where J, ( X) are the Bessel functions of the first kind and
order m. The eigenvalues A, are also given in [8].

When the steady-state is reached, the tissue is allowed to
cool. For the cooling case, the temperature distribution is
given by

6(r,1)=—¥(r,1).

C. Rectangular Slab

We shall consider a finite slab of thickness 24 and lateral
dimensions which are large compared to the thickness, so
that the gradients in those directions are negligible. We will
only solve the heat transfer equation in one dimension, but
employ a three-dimensional model to estimate the-heat
transfer coefficient /. The midplane between the two faces
(top and bottom) is then considered as an adiabatic surface.
The nondimensional governing differential equation and
the associated conditions are

320 14
with 1C
<0  6(x,1)=0 (22a)
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and BC’s
>0 ¥ _o  ax=0 ()
ax atx=
0 < _
s Bid, atx=l1. (22¢)

Here x=x*/d and Bi=hd/k. The tilde () is used to
indicate the rectangular geometry. We write
f (x,1) = (x)+¥(x, 1)
where 0;S(x) and ¥(x, 1) can be shown to be
1 1 1

_ _ 1, 1. 1
g (x)= 7% +2+1~3i

(23)

(24)
and

<0
V(x,t)= Y B,cosA,xe ™,
n=20

(25)

The coefficients l§n and f\n in (25) are determined from

sinA, cosA, sinA,
TR e
n = - — (26)
1, 1sin2A,
[5 ZT}
and
AtanA = Bi. (27)

For the cooling case

0(x,1)=—¥(x,1). (28)
V. EVALUATION OF THE HEAT TRANSFER
COEFFICIENTS

The heat transfer coefficients 4 used in the definitions of
Bi, Bi, and Bi are evaluated from the steady-state Nusselt
number correlations available in the heat transfer litera-
ture. These correlations summarize experimental data over
very wide ranges of experimental conditions, and reflect
the thermal and hydrodynamic properties of the coolant
flow. Therefore, the present results can be applied to cases
in which the coolant is a liquid other than water, or even a
gas, the only restriction being on the Reynolds number of
flow. The evaluation we make is consistent with the as-
sumption of quasi-steady-state of the coolant heat transfer.
The calculation of the heat transfer itself will be made on
the basis of the temperature difference between the tissue
surface and the bulk temperature of the coolant.

1) For a spherical object, the following correlation is
taken from Gebhart (9):

Nu,= -2%’;1 =2.0+0.6Rel/?Pr!/3,

for 1<Rep, <7X10%. (29)

Here Nu, and Re, are, respectively, the Nusselt and
Reynolds numbers which are based on the diameter of the
sphere (cf. Nomenclature), and Pr is the Prandtl number of
the coolant. The constant 2.0 in (29) is the Nusselt number
for a stagnant coolant bounding the sphere (Re, =0).
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2) For a cylindrical object, the following correlation
suggested by Churchill and Bernstein (10) is used:

. 2hR 0.62Rel/2Pr!/3
uD:~k—:0
f 04 2/311/4
1+ %)

for 0.04 <Re,, < 4000. Again, Nu, and Re,, are based on
the cylinder diameter.

3) For a rectangular slab of finite thickness there are no
correlations that are available in published literature. A
general solution to this problem is quite difficult; even to
experimentally determine a suitable heat transfer correla-
tion for the flow past a heated, finite thickness, finite slab,
the task is formidable. Instead, it is customary to ap-
proximate the problem by making suitable assumptions. In
this paper we set

(30)

hD,
~ . q
Nu D, kf =Nu conduction

+Nu

convection (3 1)
The Nu___4.c00q is €valuated by approximating the rectan-
gular slab as a solid bounded by two circular disks, one at
the top and the other at the bottom. The total surface area
of the disk will equal the surface area of the slab. The
analytical solution to the heat conduction problem of a
circular disk in a stagnant fluid is given by Carslaw and
Jaegar [11]. From this, it follows that, for our problem

4 2hR,
conduction = — — __k—q' (3 2)
7

where R, is the radius of the equivalent circular disk.
Next, the Nu_c.cion 15 €Valuated on the assumption that
the slab could be replaced by an equivalent sphere. Then
we can write

Nu

. hD, .
Nuconvection = —];f_q =0.6 Rell)iqz Pr'/3, (33)

In (33), D,, is the diameter of an equivalent sphere whose
surface area equals the surface area of the slab.

Since we have developed an expression for the Nu on an
approximate basis, it is worthwhile to examine the validity
or appropriateness of the results obtained. In this context,
Brenner [12] has published solutions to the heat transfer
problem of flow past an arbitrarily shaped body. His
solutions are limited to the range of low Peclet numbers
(Pe =Pr-Re). Brenner’s analysis is by asymptotic methods
and he offers the result for Pe <1

Nu _ NugyPe
Nu, =1+ 8

+0(Pe?) (34)
where Nu, is the Nusselt number for the stagnant fluid
case. In (34), the characteristic length is the largest length
of the arbitrarily shaped body. For a sphere, this would be
the diameter, and for a rectangular slab this would be the
principal diagonal. Brenner’s equation will be used as a
check on the correlations employed in our paper, in the
next section.
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Fig 2. Nondimensional temperature () versus time (¢) at the center of
the tissue sphere, for coolant flow rates with Reynolds numbers of 0,
0.5, and 5.0.

VI

The transient temperature distributions during the heat
up and cooling of a spherical, a cylindrical, and a rectangu-
lar slab tissue are calculated for different flow Reynolds
numbers. In these calculations we have used the following
values for the tissue properties:

RESULTS AND DISCUSSION

density: Piissue — Pwater
thermal conductivity: kg = 0.7k water
specific heat:  C, e = 07C,

The properties are evaluated at a temperature 7; = 30°C.

Fig. 2 shows the nondimensional temperature § versus
nondimensional time #, at the center » =0 of a spherical
tissue for Re, =0, 0.5, and 5. At any given time ¢, the
maximum temperature occurs at the center of the sphere;
the maximum value is attained during the steady-state of
the heating period. The nondimensional, maximum tem-
perature at the center of the sphere, in the steady-state,
follows from (10) to be

1 1

0 = G + 1B (35)
It is seen from (35) that the maximum temperature at-
tained decreases with increasing Reynolds numbers, which
is an expected consequence of the higher rate of heat
removal from the surface of the tissue. However, for
Reynolds numbers greater than about 5, the maximum
temperature very quickly approaches its limiting value of
1/6. This behavior is evident from Fig. 2. It is also
observed from Fig. 2 that the steady-state is attained faster
with increasing Reynolds number. The time taken to attain
a steady-state is determined by the time constants of the
problem, which appear as eigenvalues in (11), (18), and
(25). A high Re results in a high Bi and the associated
eigenvalues are large [8]. For objects with comparable
characteristic dimensions (a, R, d), these eigenvalues in-
crease in the following order: slab, cylinder, and sphere.
(This is not surprising in view of the greatly different
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Fig. 3. Nondimensional temperature (6) versus nondimensional time
(1) at different radial locations in the tissue sphere, assuming a coolant
flow with Reynolds number 0.5. The radius of the sphere is 1 in
nondimensional units.
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Fig. 4. Nondimensional temperature (#) versus nondimensional time
(r) on the centerline of a cylindrical object, for coolant flows with
Reynolds numbers 0.5 and 5.0.

surface to volume ratios of these objects.) In each case, the
lowest eigenvalue dominates, and the approach to the
steady-state resembles an exponential process.

Fig. 3 shows the nondimensional temperature # versus
dimensionless time ¢ for the spherical tissue. The Re is
fixed at 0.5 and the values are given for three different
radial locations r =0, 0.5, and 1.0. All the curves in Fig. 3
correspond to the same set of time constants. Thus the time
taken to reach steady-state is the same for all radial loca-
tions. At any time ¢, during heating or cooling, the temper-
ature 6 is higher as we move towards the center of the
sphere. Since the time taken to attain the steady-state is
independent of the radial location, the heating or cooling
rate (temperature change/time) is higher as we approach
the center.

Fig. 4 shows the nondimensional temperature @ versus
time ¢ at the center, r =0, of a cylindrical tissue. The
results are for Re, =0.5 and 5. There is no curve corre-
sponding to Re, = 0 because for an infinitely long cylinder
with stagnant fluid on the outside, no steady-state solution
exists [9]. The heating and cooling curves are similar to
those found for the sphere, except that the time constants
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Fig. 5. Nondimensional temperature (#) versus nondimensional time
(¢) for different radial locations in the cylindrical tissue, for coolant
flow with a Reynolds number of 0.5. The diameter of the cylinder is 1
in nondimensional units.
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Fig. 6. Dimensional temperature (in degrees Celsius) versus dimensional
time (in seconds) at the center of a heated tissue cylinder and sphere,
assuming a heating rate Q of 100 mW /cm?, and a Reynolds number of
flow of the coolant of 0.5.

o

are larger. Fig. 5 shows the variation of § with ¢ at Re = 0.5
and at three radial locations r =0, 0.5, and 1.0. Also, the
nondimensional temperature levels attained for a cylindri-
cal tissue are higher than those for an equivalent spherical
tissue, as expected because a cylindrical object has lesser
surface area for heat transfer per unit volume compared to
an equivalent spherical object. Fig. 6 offers a comparison
between the dimensional temperature at the center that is
attained in a cylinder and a sphere for the same heat
generation of Q =100 mW /cnr’. The Re,, for the external
flow is fixed at 0.5. The tissue dimensions are a = R=1
mm.

Fig. 7 shows the variation of § with ¢, at the midplane of
a rectangular slab of tissue. The ReD values studied are
0.5 and 5. The tissue dimensions are taken to be 1 cmX 1
cmX0.2 cm. The slab has the longest thermal response
time, for equivalent size structure, of the three different
geometries investigated in this paper. As mentioned earlier,
we choose to compare our results with those of Brenner
[12], which are applicable for the cases where Pe <<1. In our
problem, Pr~35. Therefore, a meaningful comparison
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Fig. 7. Nondimensional temperature (#) versus nondimensional time
(?) in the midplane of a tissue slab, assuming Reynolds numbers of the

coolant flow of 0.5 and 5.0.
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Fig. 8. The maxumum temperature gradient, in degrees Celsius per
centimeter at the surface of the tissue sphere, for two different

Reynolds numbers.

TABLE1
COMPARISON OF NUSSELT NUMBERS

Brenner's Eq. (Ref.12)

This Study

may be made for Re ~ 0.1. Such a comparison turns out to
be remarkably good (Tabie I).

Fig. 8 shows the dimensional radial temperature gradient
(°C/cm) versus time (seconds), evaluated at the surface of
a spherical tissue (where the gradient is a maximum). The
Re,, studied are 0.5 and 5. The steady-state value for the
dimensional temperature gradient is seen to be indepen-
dent of the Reynolds number of the external flow. This
value may be shown from the theory to be

AT*|_ —Qa
arxi 3k

surface

(36)

Sphere Rectangular Slab
2.320 2.602
2,271 2.590
VII. CONCLUDING REMARKS

From these results, several conclusions can be drawn
that are important for the kind of experiment under con-
sideration.

1) There is a minimum Reynolds number of coolant flow
required for optimum cooling. In general, for an object of a
given size heated at a given SAR, higher flow velocities of
the coolant will result in lower steady-state temperature
increases within the object. However, beyond a certain
Reynolds number (which depends on the geometry of the
object) no significant decreases are obtained; the tempera-
ture at the surface approaches that of the coolant, and the
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temperature rise within the object is determined principally
by its thermal conductivity. In an actual experiment, it is
important to employ coolant flows with Reynolds numbers
sufficiently high that the temperature increases in the ob-
ject are at a minimum and the variations in temperature
rise with (perhaps inadvertent) variations in flow rate are
negligible.

The Reynolds number of coolant flow required to pro-
duce this optimum cooling can be easily obtained. We
define a “transition” Reynolds number corresponding to a
case where the temperature increase at the center of the
object is 10 percent above that obtained in the limit of high
coolant flow rate. We find

Sphere: Rep,  =~4500 (k/ kf)zPr_z/ 3
AN
Cylinder: Rep,  =4200 (k/k;)'Pr=*/>
e k D eq ’ —2/3
Slab: Re, =1100 k_f v Pr (37)

for moderate to large Prandtl numbers (Pr >1). For water
flow past a tissue sphere, this transition Reynolds number
is about 700. For a tissue sphere of radius 1 cm, this
condition corresponds to a water flow velocity of 2.5
cm/s; for a 1-mm radius sphere, it would be tenfold
higher. Because of the simplifications employed in these
calculations, somewhat higher flow rates should be pro-
vided in an actual experiment to ensure optimum cooling.

2) The maximum temperature difference that can be
established in a tissue subjected to uniform heating is
bounded by the following limits:

. 9a _ Qa? (. 2k
Sphere: T <(T*=T) pax < |1 X, (38)
2
Cylinder: Q“I; <(T*~T) ax (39)
L od_ o, Qd’ k P
Slab: - S(T*—T) pax < % 111089 K[

(40)

For a tissue sphere of 1-cm radius whose material thermal
properties are as given above, subject to a time-averaged
SAR of 0.1 W /cm’, the maximum temperature rise at the
center is thus within the range of 3.9-9.3°C. For a 1-mm
radius sphere subject to the same SAR, the comparable
range is 0.04-0.1°C. Since these temperature increases are
quite nonuniform throughout the preparation, they might
elicit biological effects that are not observed in the simple
control experiment of increasing the temperature of the
bath, with no heating by microwave energy. Because of the
quadratic dependence of the maximum temperature rise on
the dimension of the object, the temperature rise in objects
of less than millimeter dimension will be very small for any
experimentally reasonable value of the SAR. This suggests
the impossibility of producing biologically significant tem-
perature gradients over cellular or macromolecular dis-
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tances, even though tissue structures or macromolecules of
these small dimensions might, under appropriate circum-
stances, absorb more electromagnetic energy per unit
volume than its surroundings [13]-[15].

3) The thermal time constant, required for the sphere to
reach the steady-state after the heating is begun, is of the
order of a’/a. For a tissue sphere of 1-cm radius, this is
several minutes; for a 1-mm radius sphere, the time con-
stant is reduced to a few seconds.

It is interesting to examine some of the previous bioef-
fects experiments in view of the present results. Chou and
Guy [1] exposed isolated rabbit nerve bundles to micro-
wave fields with an estimated SAR of 1.5 W/g. The
changes they observed in the conduction velocity of these
bundles corresponded to a 1° increase in the temperature
of the preparation, which was equal to the measured in-

* crease in temperature of the coolant fluid during the ex-

posure. From (39), we expect that the maximum tempera-
ture rise in the tissue was about 0.9°C (for a 1-mm radius
nerve subject to maximum external cooling). It appears
that, in this case, the differential heating of the nerve
preparation could be significant, although the analysis of
the investigators suggests that the tissue temperature for
the most part was close to that of the coolant.

In contrast, in the experiments of Stewart—-Dehann ef al.
(6], rat ocular lenses were exposed to microwave fields with
SAR values in the range 120-1200 mW /cnr’. Assuming the
diameter of the lens to be 0.7 ¢cm, we estimate that the
maximum temperature increase is in the range 0.6-6°C
with optimum surface cooling, and up to threefold higher
with less effective cooling. In producing the observed bio-!
logical responses (local tissue damage through the lens),
heating effects were probably significant, although the
different effects produced by pulsed versus continuous-
wave microwave energy with the same time-averaged SAR
cannot be accounted for by this model.
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